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m Learn interesting and useful latent representations in data

m e.g. independent latent components — ’principled
disentanglement’

m In the past — linear ICA:

N
x=As;:p(s) = [ [ pils) (1)
m What we really want — Nonlinear ICA:
N
x =f(s) : p(s) = [ [ pi(s:) )

m Problem: nonlinear ICA is non-identifiable! (unsolved problem
for decades...)
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m Without identifiability true representations can’t be recovered
Identifiability problem — nonlinear ICA
po(X) = py(x) # s =8 wheres = £, (x)

m Unconditional factorial prior on latent variable =—
unidentifiable latent variable model (c.f. VAEs, GANSs)

m Identifiability requires conditional (factorial) prior:

= [Ip(s) = p(sle) = [T ptsile) 3)

m see e.g. Khemakhem et al. (2020)
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m Problems:
> Assumes non-stationary segments indices are observed — not truly
unsupervised
» For large data, segment indices impossible to find manually
» In practice segment at equal intervals
» Inaccurate, unprincipled, ignores temporal latent dynamics
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m Learn states and dynamics in a hidden Markov model (HMM)
framework!

C1 — c2 —_—> c3 —>

Voo

N
h(s;
s1 s2 s3 p(S(')|C(I); Aw) = H Z(g\' ())) eXP{O‘i,c(')»Ti(si))}

m Learning by EM (Baum-Welch) — including posteriors of
conditioning variable

5/9



Results — identifiability theory

m Central question: can latent conditioning variable identify
nonlinear ICA?

6/9



Results — identifiability theory

m Central question: can latent conditioning variable identify
nonlinear ICA?

m Gassiat et al. (2016) — state conditional output distributions of any
HMM are identified (some assumptions)

6/9



Results — identifiability theory

m Central question: can latent conditioning variable identify
nonlinear ICA?

m Gassiat et al. (2016) — state conditional output distributions of any
HMM are identified (some assumptions)

m Our paper — latent state temporal structure identifies ICs via
HMM identifiability (proof in paper):

6/9
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m Central question: can latent conditioning variable identify
nonlinear ICA?

m Gassiat et al. (2016) — state conditional output distributions of any
HMM are identified (some assumptions)

m Our paper — latent state temporal structure identifies ICs via
HMM identifiability (proof in paper):
» Strong identifiability (under some assumptions):

si = wygj(X) + by
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Results — simulations
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Conclusion

m First unsupervised identifiable nonlinear ICA — latent
conditioning variable is learned by HMM

m Strong identifiability results

m Many real world data, e.g. brain imaging and video, are
non-stationary and will be experimented upon

m More complex conditional independence structures, dimension
reduction, are some theoretical extension in progress
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